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Introduction

• Massive volumes of earth science data collected and generated by
growing number of satellites, in-situ sensors and increasingly complex
ecosystem and climate models

• Identification of anomalies within the ecosystems
• wildfires, droughts, floods, insect/pest damage, wind damage, logging

• Datasets stored at geographically different locations
• NASA’s Distributed Active Archive Centers (DAAC) stores Earth

science data at 12 locations

• Scalable algorithms needed to co-analyze these peta-byte scale
distributed data sources
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Contribution

• Scalable algorithm for distributed anomaly detection on vertically
partitioned data

• Communication required less than 1% of that required for
centralization, yet 99% accurate compared to a centralized algorithm

• Capable of detecting significant outliers missed by using only a subset
of features
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Background: ν 1-class SVM

• Semi-supervised learning method for drawing a separating hyperplane
that separates “+” from “-” or “good” from “bad”

• ν 1-class SVM draws separating hyperplane with ν % of data on one
side

• Design parameter ν: maximal rate of outliers in training set
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Figure: ν 1-class SVM
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Background: ν 1-class SVM ...contd.

• Non-linear hyperplane in input space formed by kernel:

k(−→xi ,−→xj ) = exp

(
−
∥∥−→xi −−→xj ∥∥2

2σ2

)

Optimization problem

minimize Q =
1

2

∑
i ,j

αiαjk(−→xi ,−→xj ) + ρ

(
νm −

∑
i

αi

)
subject to 0 ≤ αi ≤ 1, ν ∈ [0, 1]
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Background: ν 1-class SVM ...contd.

• Hyperplane defined by support vectors — points in the dataset which
have 0 < αi ≤ 1

• For test point −→xt

f (−→xt ) =
∑
i∈SV

αik(−→xi ,−→xt )− ρ

• −→xt outlier if f (−→xt ) < 0
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Distributed outlier detection: overview

• P0, ...,Pp: nodes

• Di =

[−→
x

(i)
1 . . .

−→
x

(i)
m

]T
: data

at node Pi

• Same m rows at each node
• ni features at node Pi

Figure: Computing model
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Distributed outlier detection: local pruning rule

Pruning rule

An observation −→x ∈ D is a global outlier with respect to all the features if
it is an outlier with respect to at least one (or a subset) of the features

Figure: Local pruning rule
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Local distributed outlier detection at Pi

Input Di , sample size Ts , ν

Output outlier set Oi

Process • Get Ts samples from Di for training SVM
• Test remaining points in Di

• Send to P0 those points in Di whose anomaly score < 0
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Global distributed outlier detection at P0

Input O1, . . . , Op, Ts , ν

Output global outliers Od

Process • Fetch Ts samples from each site for training global
SVM at P0

• Test all points in
⋃

i Oi

• Set all points with anomaly score < 0 as global outliers
Od
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California MODIS dataset
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Figure: Preprocessing the CA MODIS dataset
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Algorithm performance: accuracy
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Figure: Accuracy on CA MODIS dataset

Figure: Correctness of distributed
algorithm
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Algorithm performance: running time
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Figure: Running time CA MODIS dataset

Centralized: O
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)

Distributed: O(mn2
i )
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Algorithm performance: message complexity
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Figure: Message complexity on CA MODIS dataset

Centralized: m ×
∑p

i=1 ni

Distributed:
∑p

i=1 |Oi | × ni + Ts
∑p

i=1 ni
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Outliers on CA MODIS dataset

Figure: Top 50 unique outliers detected by the distributed algorithm
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Summary

• Developed a distributed algorithm capable of detecting outliers from
distributed data where each site has a subset of the global set of
features

• Pruning rule achieves 99% accuracy with only 1% of the
communication cost needed for centralization

• Future work is to extend this method for monitoring a data stream for
outliers
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